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Abstract. Observing the world and finding trends and relations among the
variables of interest is an important and common learning activity. In this paper
we apply TETRAD, a program that uses Bayesian networks to discover causal
rules, and C4.5, which creates decision trees, to the problem of discovering
relations among a set of variables in the controlled environment of an Artificial
Life simulator.  All data in this environment are generated by a single entity
over time. The rules in the domain are known, so we are able to assess the
effectiveness of each method. The agent's sensings of its environment and its
own actions are saved in data records over time. We first compare TETRAD
and C4.5 in discovering the relations between variables in a single record. We
next attempt to find temporal relations among the variables of consecutive
records. Since both these programs disregard the passage of time among the
records, we introduce the flattening operation as a way to span time and bring
the variables of interest together in a new single record. We observe that
flattening allows C4.5 to discover relations among variables over time, while it
does not improve TETRAD's output.

1 Introduction

In this paper we consider the problem of discovering relations among a set of
variables that represent the states of a single system as time progresses. The data are a
sequence of temporally ordered records without a distinguished time variable. Our
aim is identify as many cases as possible where two or more variables' values depend
on each other. Knowing this would allow us to explain how the system may be
working. We may also like to control some of the variables by changing other
variables. We use data from a simple Artificial Life [6] domain because it allows us to
verify the results, and thus compare the effectiveness of the algorithms.

Finding associations among the observed variables is considered a useful
knowledge discovery activity. For example, if we observe that (x = 5) is always true
when (y = 2), then we could predict the value of y as 2 when we see that x is 5.
Alternatively, we could assume that we have the rule: if {(x = 5)} then  (y = 2), and
use it to set the value of y to 2 by setting the value of x to 5. Some researchers [1, 10]



have tried to find the stronger notion of causality among the observed variables. In the
previous example, they may call x a cause of y.

In this paper we consider two approaches to the problem of finding relations
among variables. TETRAD [9] is a well-known causality miner that uses Bayesian
networks [3] to find causal relations. One example of the type of rules discovered by
TETRAD is x → y, which means that x causes y. From the examples in [1, 10], it
appears that Bayesian networks discover more causal relations than actually exist in
the domain. Bayesian networks find causality even in domains where the existence of
causal relations itself is a matter a debate. For words in political texts, Bayesian
networks find rules such as "Minister" is caused by "Prime" [10]. This
suggests that there is a considerable amount of disagreement about the concept of
causality. There are ongoing debates about the suitability of using Bayesian networks
for mining causality [2, 4, 5, 11]. Here we apply TETRAD to identify relationships
between variables without claiming that all of them are causal relationships.

C4.5 [8] creates decision trees that can be used to predict the value of one variable
from the values of a number of other variables. A decision tree can easily be
converted to a number of rules of the form if {(x = α) AND (y = β)} then (z = γ). The
variables x and y may be causing the value of y, or they may be associated together
because of some other reason. C4.5 makes no claim about the nature of the
relationship.

Both these programs ignore any temporal order among the records, while in the
data that we use there does exist relations among the variables in consecutive records,
in the sense that the values of some variables in a record affect the values of variables
in later records. We will describe the method used to overcome this problem.

The rest of the paper is organized as follows. Section 2 describes the simple
environment that we chose for testing the different methods. In Section 3 we first
compare the results obtained from TETRAD and C4.5 when there is an association
among the variables of a record, but no causality. After that we attempt to discover
temporal relations among the records. Section 4 concludes the paper.

2 An Agent's View of its Environment

We use an Artificial Life simulator called URAL [12] to generate data for the
experiments. URAL is a discrete event simulator with well known rules that govern
the artificial environment. There is little ambiguity about what causes what. This
helps to judge the quality of the discovered rules.

The world in URAL is made of a two dimensional board with one or more agents
(called creatures in Artificial Life literature) living in it. An agent moves around and
if it finds food, eats it. Food is produced by the simulator and placed at positions that
are randomly determined at the start of each run of the simulator. There is a maximum
for the number of positions that may have food at any one time, so a position that was
determined as capable of having food may or may not have food at a given time. The
agent can sense its position and also the presence of food at its current position. At
each time-step, it randomly chooses to move from its current position to Up, Down,
Left, or Right. It cannot get out of the board, or go through the obstacles that are



placed in the board by the simulator. In such cases, a move action will not change the
agent's position. The agent can sense which action it takes in each situation. The aim
is to learn the effects of its actions at each particular place.

URAL employs Situation Calculus [7] to build graphs with observed situations as
the nodes and the actions as transition arcs between the situations. Agents use the
graphs to store their observations of the world and to make plans for finding food.
URAL differentiates between volatile and non-volatile properties of a situation. The x
and y positions are non-volatile, and are used to distinguish among the situations. The
presence of food is a volatile property, which means that the same situation can be in
different states. The creature only keeps the last observed state of a situation. URAL
was modified for this experiment to log each encountered situation in a file.

For our agent, time passes in discrete steps. At each time step, it takes a snapshot of
its sensors and randomly decides which action it should perform. This results in
records such as <x position, y position, is food here?, action>. C4.5 treats the last
variable in a record as the decision attribute, so if necessary the variables are
rearranged in the log file. Figure 1 shows two example sequences of records. In
Figure 1(a) the last variable is the action, while in 1(b) it is the x position. Here time
passes vertically, from top to bottom.

<x, y, f, a> <y, f, a, x>
<1, 3, false, L> <3, false, L, 1>
<0, 3, false, L> <3, false, L, 0>
<0, 3, true, D> <3, true, D, 0>
<0, 4, false, U> <4, false, U, 0>
<0, 3, true, D> <3, true, D, 0>

(a) (b)

Fig. 1. Two example sequences of records

The agent, moving randomly around, can visit the same position more than once.
Unlike the real-world data studied by many people [1, 2, 10], here we can reliably
assume a temporal order among the saved records, as each observation follows the
previous one in time. Considering the similarities between data gathered by an agent
and the statistical observations done by people for real-world problems, it is
interesting to see if we can use the same data mining techniques to extract knowledge
about this environment.

The agent can move around in this very simple world, so it has a way of changing
its position by performing a move action. Creating food, on the other hand, is
completely beyond its power. Finding the effects of the agent's actions requires
looking at more than one record at a time (two consecutive records in this
environment), because in this environment the effects of an action always appears at a
later time. Any algorithm that does not consider the passage of time is limiting itself
in finding causal rules. So this domain contains causal relations detectable by the
agents over time (the effects of moving), as well as relations that are not detectable by
the agent (the place of food).



3 Experimental Results

The effectiveness of TETRAD and C4.5 at finding valid relations is assessed in
two situations: within a single record and within consecutive pairs of records.

3.1 Experiment 1: Relationships within a Single Record

From the semantics of the domain, we know that no causal relationship exists
within a single record. Causal relations appear across the records. However, there is
an association between the x and y position of an agent and the presence of food at
that position, as the simulator places food at only certain places. A position may or
may not contain food at any given time. We created a log file of the first 1000
situations encountered by a single agent and used it for the experiments.

We first fed the log file to TETRAD version 3.1. In TETRAD’s notation, A •→ B
means that either A causes B, or they both have a hidden common cause, A •−• B
means that A causes B or B causes A, or they both have a hidden common cause, and
A ↔  B means that both A and B have a hidden common cause.

 TETRAD would not accept more than 8 different values for each variable, so the
world was limited to an 8 × 8 square with no obstacles. In the log file, x and y denote
the agent's position, f denotes the presence of food, and a is the performed action. The
presence of food and the actions were represented by numerical values to make them
compatible with what TETRAD expects as input. The results were generated by the
"Build" command. It did assume the existence of latent common causes, and used the
exact algorithm. TETRAD's output is shown in Table 1.

Case Significance Level(s) Discovered Rules C PC W
1 0.0001 y •→ x,  f , a ••→→  x 1 1 1
2 0.001, 0.005, 0.01 a ••→→  y ,  x ••−−•• a,  x •→ y,  f •→ y 0 2 2
3 0.05, 0.1 x •−• y,  f •→ x,  a ••→→  x,  f •→ y,  a ••→→  y 0 2 2
4 0.2 x •−• y,  x ••−− •• f,  x ••−− •• a,  y ••−− •• f,

y ••−− •• a,  f •−• a
0 4 2

Table 1. The rules discovered by TETRAD.

Based on the rules enforced by URAL in the artificial environment, the desired
output in TEDRAD's notation would be the following relations: x •−•  f (x and f are
associated), y •−• f (y and f are associated), f (f has no cause and does not cause
others). The relations that are not totally wrong are shown in bold. In the table the C
column indicates the number of Correct rules, the PC column show the number of
Partially Correct (non-conclusive) rules, and W shows the number of Wrong rules.

The appearance of food at a certain position depends on a random variable inside
the URAL code, and there is no causal relation that the agent can discover, but there is
an association between positions and the presence of food.

In case 1 the rule a •→ x correctly guesses that a may be a cause of x. However
this is not conclusive in the sense that it considers it possible for a hidden common
cause to exist. This is an important distinction. In the next rule f, TETRAD identifies f
as something that does not cause anything, and is not caused by anything else. The



other rule, y •→ x, is wrong because the y coordinate of a position does not determine
the x coordinate. Case 2 does not go wrong in the first two rules, even though none of
them is conclusive. The other two rules are wrong. Case 3 does better in finding the
relationships among a and x, and a and y, but the results are still not conclusive. Case
5 finds associations among x, y and f, but then wrongly does the same for a and f too.

As seen, TETRAD draws many wrong conclusions from the data, and with the
exception of one rule (f), the rest are not conclusive. Notice that here we have been
generously interpreting the rules involving a as if TETRAD is aware that an action
will have an effect on the next value, and not the current value, of x or y.

We then tried the c4.5rules program of the C4.5 package in the default
configuration, on the same data. We assigned the presence of food as the decision
attribute. C4.5rules eliminates unneeded condition attributes when creating rules. For
example, if the value of x2 is sufficient to predict the outcome regardless of the value
y2, the generated rule will not include y2.  We are looking for rules of the form if {(x =
α) AND (y = β)} then (f = γ), which means that there is a relation between the
position (x and y) and the presence of food.

Table 2 shows the c4.5rules program's results for determining the value of f. Rules
that are actually and useful for finding food are shown in bold. The rules predicting
the presence of food correctly included both x and y. The rest of the rules deal with
cases where no food was present.

Decision
Attribute

Condition
Attribute(s)

Number
of Rules

Example Correctness

f x 1 If{(x = 5)} then (f = 0) Correct
f y 2 If{(y = 2)} then (f = 0) Correct
f a 1 If{(a = L)}then (f = 0) Wrong
f x, y 2 If{(x = 2) AND (y = 3)}

then (f = 1)
Correct

Table 2. Attributes used in rules generated by C4.5 to determine the presence of food.

C4.5 was unable to find useful rules for determining the values of x or y, as they
depend on the previous position and action, which are not available. The decision tree
for x, for example, wrongly included the presence of food as a condition attribute.

3.2 Experiment 2: Relationships among Consecutive Records

As mentioned, the log file consists of temporally ordered records. Neither C4.5 nor
TETRAD considers the temporal order and adding a simple discrete time stamp as an
attribute will not allow them to find temporal relationships. With the semantics of our
example domain in mind, the most one can hope for in the previous tests is finding a
correct association between the agent's position and the presence of food.

The effects of an action will not be seen until later in time. Using a preprocessing
step, a flattened log file is created with two or more consecutive records as a single
record. Flattening the sequences in Figure 1(a) and 1(b) using a time window of size 2
gives the sequences sown in Figure 2(a) and 2(b) respectably, where time passes
horizontally from left to right and also vertically from top to bottom. Here we have
renamed the variables to remove name clashes. With the exception of the first and last



records, every record appears twice, once as the second half (effect), and then as the
first half (cause) of a combined record.

<x1, y1, f1, a1, x2, y2, f2, a2 > <y1, f1, a1, x1, y2, f2, a2, x2>
<1, 3, false, L, 0, 3, false, L > <3, false, L, 1, 3, false, L, 0 >
<0, 3, false, L, 0, 3, true, D > <3, false, L, 0, 3, true, D, 0 >
<0, 3, true, D, 0, 4, false, U > <3, true, D, 0, 4, false, U, 0 >
<0, 4, false, U, 0, 3, true, D > <4, false, U, 0, 3, true, D, 0 >

(a) (b)

Fig. 2. The flattened sequences of Figures 1(a) and 1(b).

The appropriate size of the time window depends on the domain. It should be wide
enough to include any cause and all its effects. If we suspect that the effects of an
action will be seen in the next two records, then we may flatten Figure 1(a) to get
records like: <1, 3, false, L, 0, 3, false, L, 0, 3, true, D>. The algorithms accepting the
flattened records as input may not know about the passage of time, but flattening
brings the causes and the effects together, and the resulting record then has the
information about any changes in time.

For the next experiment, a window size of 2 was used because in the URAL
domain the effects of an action are perceived by the agent in the next situation. In the
combined record, x1, y1, f1 and a1 belong to the first record, and x2, y2, f2 and a2 belong
to the next one. TETRAD’s output for the resulting data is shown in Table 3.

Case Significance Level(s) Discovered Rules C PC W
1 0.0001 y1 •→ x1,  a1 •→ x1,  x1 ••−−•• x2,  y2 •→ x1,

a2 •→ x1, y1 •→ x2,  y1 ••→→  y2, a1 ••→→  x2,
a1 ↔↔  y2,  a2 •→ a1, y2 •→ x2,  a2 •→ x2,
f1,  f2

2 4 8

2 0.0005, 0.001,
0.005, 0.01

y1 •→ x1,  x1 •−• a1,  x1 ••−− •• x2,  x1 •−• y2,
a2 •→ x1, y1 •→ a1,  y1 •→ x2,  y1 ••→→  y2,
a1 ••−− •• x2,  a1 ••−−•• y2, a2 •→ a1,  x2 •−• y2,
a2 •→ x2,  a2 •→ y2,  f1,  f2,

2 4 10

3 0.1 x1 •→ y1,  x1 •−• a1, x1 ••→→  x2, x1 •−• y2,
x1 •−• a2, f1 •→ y1, a1 •→ y1,  y1 ↔ x2,
y2 •→ y1, a2 •→ y1, a1 ••→→  x2,  a1 ••−− •• y2,
a1 •−• a2,  y2 •→ x2,  f2 •→ x2, a2 •→ x2,
y2 •−• a2

0 3 14

4 0.2 x1 •−• y1,  f1 •→ x1,  x1 ↔ a1,  x1 ↔ x2,
y2 •→ x1, a2 •→ x1,  f1 •→ y1,  y1 ↔ a1,
y1 ↔ x2,  y2 •→ y1, a2 •→ y1,  a1 ••−− •• x2,
y2 •→ a1,  f2 •→ a1,  a2 •→ a1, y2 •→ x2,
f2 •→ x2,  a2 •→ x2,  y2 •−• a2

0 1 18

Table 3. The rules discovered by TETRAD from the flattened records.

Here we are looking for the following relations: x1 •• −− ••  f1 (x1 and f1 are associated),
y1 •• −−••  f1 (y1 and f1 are associated), f1, f2 (f1 and f2 have no causes and do not cause



anything), x2 •• −−••  f2 (x2 and f2 are associated), y2 •• −− ••  f2 (y2 and f2 are associated), a1 →
x2 (a1 causes x2), a1 → y1 (a1 causes x1), x1 → x2 (x1 causes x2), and y1 →  y2 (y1 causes
y2). The relations that are not totally wrong are shown in bold.

Most rules discovered by TETRAD on this data are wrong. In comparison with
Experiment 1, the increased number of variables in Experiment 2 has resulted in an
increase in the number of discovered rules, most of which are either wrong or not
conclusive.

We applied C4.5 to the same data. The desired output rules are of the following
forms: if {(x2 = α) AND (y2 = β)} then (f2 = γ) (Association between x, y, and food),
if {(x1 = α) AND (a1 = β)} then (x2 = γ) (predicting the next value of x), and if {(y1 =
α) AND (a1 = β)} then (y2 = γ) (predicting the next value of y). The results produced
by c4.5rules are shown in Table 4.

Decision Attribute Condition Attribute(s) Number of Rules Validity
f2 x2 1 Correct
f2 y2 2 Correct
f2 a2 1 Wrong
f2 x2, y2 2 Correct
x2 x1, a1 32 Correct
y2 y1, a1 32 Correct

Table 4. C4.5's results after flattening the records.

Rules that can actually be used for finding and reaching food are shown in bold.
C4.5rules generated 32 correct rules for each of x2 and y2. In a two-dimensional space,
there are 4 possible actions and 8 distinct values for x1 and y1. In this example the
creature has explored all the world, and there are 32 (8 × 4) rules for predicting the
next value of x2 and y2. There were no changes in the rules for f2 (the actually useful
rules that predict the presence of food still depend on both x2 and y2) even though
C4.5 now has more variables to choose from. This is because the current value of f2 is
not determined by any temporal relationship. Overall, C4.5 did a much better job in
pruning the irrelevant attributes than TETRAD.

4 Concluding Remarks

People interested in finding relations among observed variables usually gather data
from different systems at the same time. Here we used data that represented the state
of a single system over time. While there were relations among the variables in each
state, some interesting temporal relations existed among the variables of different
states.

We applied a causality miner that uses Bayesian networks to find relations in a
very simple and well-defined domain. The results were similar to the real-world
problems: both correct and wrong rules were found. Bayesian causality miners need a
domain expert (a more powerful causal relation discoverer) to prune the output.
Flattening the records to give the algorithm more relevant data resulted in many more



irrelevant rules being discovered. We also tested C4.5 on the same data, and observed
that it is very good in pruning non-relevant attributes of the records and finding
temporal relations without actually claiming to be a causality discoverer. One
consideration with C4.5 is that the user has to identify the decision attribute of
interest.

We observed that flattening enabled C4.5 to discover new relations that it could not
find otherwise. Flattening increases the number of variables in the resulting records.
While creating a bigger search space for rule mining, flattening gives more
information to the rule miner, and makes temporal relations explicit.
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